The Benefits of a Systems Engineering Approach:

How to reduce risks and improve performance in medical device development

Presented by: Phillip Palmer, PhD Sunrise Labs

Today's medical devices need Systems Engineering

Complex architectures and operational environments

- Patient Connectivity
- Medical Disposable Interfaces
- Distributed Embedded Architectures
- loT Driven Functionality
 - BLE, Cellular, and WiFi Connectivity
- Ergonomics, Usability, and Human Factors
- Enclosure Design & Branding

Multi-disciplinary engineering teams

- Mechatronics and Motion Control
- Fluidics
- Digital & Analog Electronics Design
- Low Noise Sensing
- Digital Imaging
- Signal Processing
- Power Management Systems & Battery Tech
- Inter-processor Communication Protocols
- Dynamic and Feature Rich GIUs

What is Systems Engineering?

- Provides the glue that binds the individual engineering disciplines together
- Enables systematic progress from conceptualization to commercialization

The Role of a Systems Engineer

- Oversee Risk Management
- Facilitate technical decisions
- Coordinate multi-disciplinary team
- Act as gatekeeper of design intent and resulting product realization
- Supervise creation of design documentation

Benefits of Systems Engineering

By applying Systems Engineering processes and resources projects will achieve:

- More predictable budget and schedule performance
- Lower product costs
- Enhanced product performance
- Greater quality, maintainability, serviceability, and extensibility
- Conformance to medical device design control requirements (FDA, MDD, etc.)
- Greater adaptability to unforeseen change

- 1. Requirements Analysis & Management
- 2. Functional Analysis & Allocation
- 3. Design Synthesis
- 4. System Analysis & Control
- 5. Verification

SEPE

Systems Engineering Process Engine

Requirements Analysis & Management

For medical devices, Design Inputs most relevant to Medical Devices include:

- Market Requirements
- User Requirements
- Human Factors Evaluations
- Risk Analyses
- Industry Standards
- Regulations

Requirements Analysis & Management

A good requirements is: The "WHAT", not the "HOW".

- Unique
- Complete
- Consistent
- Unambiguous
- Viable
- Traceable
- Verifiable
- Implementation Agnostic

Requirements Analysis & Management

Design Documentation

Requirement Documentation Structure and Organization

Functional Analysis & Allocation

- Risk Management
- Functional Block Diagram

Risk Management activities are driven by:

- FDA
- ISO 13485
- Medical Device Directive

Determination of Device and Software Classification

- Guide FMEA (Failure Mode Effects Analysis)
- Creation and documentation of risk mitigating requirements

Functional Analysis & Allocation

- Risk Management
- Trade-off Studies
- Functional Block Diagram
- Physical Block Diagram

Trade-off Studies:

- Evaluate competing design architectures against a set of predefined metrics
- Head-to-head comparison of discrete components
- Make-versus-buy and cost benefit analysis
- Manufacturing and Service support considerations

Functional Analysis & Allocation

- Risk Management
- Trade-off Studies
- Functional Block Diagram
- Physical Block Diagram

Functional Block Diagram - identify functions and interfaces

Functional Analysis & Allocation

- Risk Management
- Trade-off Studies
- Functional Block Diagram
- Physical Block Diagram

Design Synthesis

3

Pugh Charts

Quantitative evaluation of proposed designs

Product tributes	Pugh Matrix Owner: Owner provides and weighting	Importance Rating	e us	ed t		cent	tuate	on c e mir es	
	Measures CTQ's Factors etc.								
	Hard Dollar Savings	7	-	+	-	+	+	+	+
	Operating Expenses	7	-	S	+	+	+	+	+
	Cost Avoidance	1	+	+	+	+	+	+	+
	Ongoing Maintenance Expense	1	+	+	+	S	+	+	-
	ROI (NPV)	9	+	+	+	+	+	-	+
	Incremental Capital	5	+	+		+	+	+	+
	Operational Stability	3	+	+	+	+	+	-	+
	Brand/Reputation	3	+	+	+	+	+	+	+
	Sum of +'s		6	7	6	7	8	6	7
	Sum of -'s		2	0	2	0	0	2	1
	Sum of Sames		0	1	0	1	0	0	0
	Weighted Sum of +'s		22	29	24	35	36	24	35
	Weighted Sum of -'s		14	0	12	0	0	12	1
	Highest Score Wins		8	29	12	35	36	12	34

System Analysis & Control

- Technical Performance Measurement
- Design Margin Analysis
- Simulation and Modeling
- Traceability
- Technical Reviews
- Configuration Management

Design Margin Analysis

Verification

- Traceability
- Testing Methods
- Configuration Management

Verification vs. Validation

- Verification Does design output meet design input
 - Did we design the <u>device correctly</u>?
- Validation Does design meet user needs?
 - Did we design the <u>correct device</u>?

Verification

- Traceability

Traceability

Verification

- Traceability
- Testing Methods
- Configuration Management

Testing Methods

• **Inspection** - nondestructive examination of a product or system using one or more of the five senses. It may include simple physical manipulation and measurements.

• **Demonstration** - the manipulation of the product or system as it is intended to be used to verify that the results are as planned or expected.

- Test verification of a product or system using a controlled and predefined series of inputs, data, or stimuli to ensure that the product or system will produce a very specific and predefined output as specified by the requirements.
- Analysis verification of a product or system using models, calculations and testing
 equipment. Analysis allows someone to make predictive statements about the typical
 performance of a product or system based on the confirmed test results of a sample set or by
 combining the outcome of individual tests to conclude something new about the product or
 system.

A Clear Case for Systems Engineering

- The medical device industry is trending toward more complex and integrated solutions.
- The demands associated with developing disruptive new technologies, complex architectures, ergonomic and intuitive user interfaces, and multidimensional development programs must be balanced with key business objectives.
- Utilizing a holistic Systems Engineering approach is critical to development of commercially viable products.

Thank You!

Please visit our website for more information, and to view our portfolio www.sunriselabs.com

Or, contact us directly

603-644-4500

Bgibney@sunriselabs.com

Barbara Gibney, Director of Marketing at Sunrise Labs

We look forward to learning more about your needs and development plans!

